15,263 research outputs found

    Universality of hypercubic random surfaces

    Get PDF
    We study universality properties of the Weingarten hyper-cubic random surfaces. Since a long time ago the model with a local restriction forbidding surface self-bendings has been thought to be in a different universality class from the unrestricted model defined on the full set of surfaces. We show that both models in fact belong to the same universality class with the entropy exponent gamma = 1/2 and differ by finite size effects which are much more pronounced in the restricted model.Comment: 8 pages, 3 figure

    A note on dark energy induced by D-brane motion

    Full text link
    In this note we study the possibility of obtaining dark energy solution in a D-brane scenario in a warped background that includes brane-position dependent corrections for the non-perturbative superpotential. The volume modulus is stabilized at instantaneous minima of the potential. Though the model can account for the existence of dark energy within present observational bound - fine-tuning of the model parameters becomes unavoidable. Moreover, the model does not posses a tracker solution.Comment: 5 pages, 4 figure

    A Field Range Bound for General Single-Field Inflation

    Full text link
    We explore the consequences of a detection of primordial tensor fluctuations for general single-field models of inflation. Using the effective theory of inflation, we propose a generalization of the Lyth bound. Our bound applies to all single-field models with two-derivative kinetic terms for the scalar fluctuations and is always stronger than the corresponding bound for slow-roll models. This shows that non-trivial dynamics can't evade the Lyth bound. We also present a weaker, but completely universal bound that holds whenever the Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page

    Prostate Biopsy Assistance System with Gland Deformation Estimation for Enhanced Precision

    Full text link
    Computer-assisted prostate biopsies became a very active research area during the last years. Prostate tracking makes it possi- ble to overcome several drawbacks of the current standard transrectal ultrasound (TRUS) biopsy procedure, namely the insufficient targeting accuracy which may lead to a biopsy distribution of poor quality, the very approximate knowledge about the actual location of the sampled tissues which makes it difficult to implement focal therapy strategies based on biopsy results, and finally the difficulty to precisely reach non-ultrasound (US) targets stemming from different modalities, statistical atlases or previous biopsy series. The prostate tracking systems presented so far are limited to rigid transformation tracking. However, the gland can get considerably deformed during the intervention because of US probe pres- sure and patient movements. We propose to use 3D US combined with image-based elastic registration to estimate these deformations. A fast elastic registration algorithm that copes with the frequently occurring US shadows is presented. A patient cohort study was performed, which yielded a statistically significant in-vivo accuracy of 0.83+-0.54mm.Comment: This version of the paper integrates a correction concerning the local similarity measure w.r.t. the proceedings (this typing error could not be corrected before editing the proceedings

    Desensitizing Inflation from the Planck Scale

    Full text link
    A new mechanism to control Planck-scale corrections to the inflationary eta parameter is proposed. A common approach to the eta problem is to impose a shift symmetry on the inflaton field. However, this symmetry has to remain unbroken by Planck-scale effects, which is a rather strong requirement on possible ultraviolet completions of the theory. In this paper, we show that the breaking of the shift symmetry by Planck-scale corrections can be systematically suppressed if the inflaton field interacts with a conformal sector. The inflaton then receives an anomalous dimension in the conformal field theory, which leads to sequestering of all dangerous high-energy corrections. We analyze a number of models where the mechanism can be seen in action. In our most detailed example we compute the exact anomalous dimensions via a-maximization and show that the eta problem can be solved using only weakly-coupled physics.Comment: 34 pages, 3 figures

    Simple threshold rules solve explore/exploit trade‐offs in a resource accumulation search task

    Get PDF
    How, and how well, do people switch between exploration and exploitation to search for and accumulate resources? We study the decision processes underlying such exploration/exploitation trade‐offs using a novel card selection task that captures the common situation of searching among multiple resources (e.g., jobs) that can be exploited without depleting. With experience, participants learn to switch appropriately between exploration and exploitation and approach optimal performance. We model participants' behavior on this task with random, threshold, and sampling strategies, and find that a linear decreasing threshold rule best fits participants' results. Further evidence that participants use decreasing threshold‐based strategies comes from reaction time differences between exploration and exploitation; however, participants themselves report non‐decreasing thresholds. Decreasing threshold strategies that “front‐load” exploration and switch quickly to exploitation are particularly effective in resource accumulation tasks, in contrast to optimal stopping problems like the Secretary Problem requiring longer exploration

    Universality in D-brane Inflation

    Full text link
    We study the six-field dynamics of D3-brane inflation for a general scalar potential on the conifold, finding simple, universal behavior. We numerically evolve the equations of motion for an ensemble of more than 7 \times 10^7 realizations, drawing the coefficients in the scalar potential from statistical distributions whose detailed properties have demonstrably small effects on our results. When prolonged inflation occurs, it has a characteristic form: the D3-brane initially moves rapidly in the angular directions, spirals down to an inflection point in the potential, and settles into single-field inflation. The probability of N_{e} e-folds of inflation is a power law, P(N_{e}) \propto N_{e}^{-3}, and we derive the same exponent from a simple analytical model. The success of inflation is relatively insensitive to the initial conditions: we find attractor behavior in the angular directions, and the D3-brane can begin far above the inflection point without overshooting. In favorable regions of the parameter space, models yielding 60 e-folds of expansion arise approximately once in 10^3 trials. Realizations that are effectively single-field and give rise to a primordial spectrum of fluctuations consistent with WMAP, for which at least 120 e-folds are required, arise approximately once in 10^5 trials. The emergence of robust predictions from a six-field potential with hundreds of terms invites an analytic approach to multifield inflation.Comment: 28 pages, 9 figure
    corecore